Disk Battery Ingestion

Updated: Dec 28, 2015
  • Author: Daniel J Dire, MD, FACEP, FAAP, FAAEM; Chief Editor: Asim Tarabar, MD  more...
  • Print
Overview

Background

Disk batteries are small, coin-shaped batteries used in watches, calculators, and hearing aids. The vast majority of disk battery ingestions occur when curious children explore their environment.

Early published case reports of ingestion of disk batteries were concerned with serious sequelae (eg, esophageal perforation, aortic perforation with exsanguination, tracheoesophageal fistulae). From these reports, recommendations were made for aggressive management, including surgical removal. Information gained from the National Button Battery Investigation Study combined with more recent case reports and series involving successful conservative management has shown that these ingestions usually are benign.

Fatal cases or those with major sequelae usually involve esophageal or airway battery lodgement. [1]

Disk batteries

Disk batteries are formed by compacting metals and metal oxides on either side of an electrolyte-soaked separator. [2] The unit is then placed in a 2-part metal casing held together by a plastic grommet (see the image below).

Cross-section of a typical disk battery. Cross-section of a typical disk battery.

The grommet electrically insulates the anode from the cathode. The metal undergoes oxidation on one side of the separator, while the metal oxide is reduced to the metal on the other side, producing a current when a conductive path is provided.

Disk batteries contain mercury, silver, zinc, manganese, cadmium, lithium, sulfur oxide, copper, brass, or steel. These are the components of the anode, cathode, and case containing the battery. Disk batteries also contain sodium hydroxide or potassium hydroxide to facilitate the electrochemical reaction through the separator. In a series of 56,535 battery ingestions from 1985-2009 in which the type of battery was known in 57.7% of the cases, 42% were manganese dioxide, 32% were zinc-air, 13% were silver oxide, and 9% were lithium (up from 1.3% in 1900-1993). [1] In 2008, 24% of the batteries ingested were lithium cells; an upward trend that started in the late 1990s with a corresponding drop in the number of mercuric oxide cells. See the image below.

Changes in chemical systems of ingested disk batte Changes in chemical systems of ingested disk batteries from 1990-2008.

Disk batteries vary in diameter from 7.9-23 mm and in weight from 1-10 g. Known diameters of ingested disk batteries are as follows: 11.6 mm (55% of cases), 7.8-7.9 mm (31% of cases), 20 mm or more (6.7% of cases), 5.8 mm (3% of cases). Cases of large diameter (≥20 mm) disk battery ingestions increased from 1% of cases from 1990-1993 to 18% of cases in 2008. [1] See the image below.

Changes in the diameter of disk battery ingestions Changes in the diameter of disk battery ingestions from 1990-2008.

From 2000-2009, 92% of disk batteries from fatal ingestions or those with major outcomes were 20-mm lithium cells. Most were imprint code CR 2032 (71%) or CR 2025 (21%). [1] "CR" represents the battery chemistry, "20" is the diameter, and "32" indicates the thickness (3.2 mm) of the battery. See the image below.

20 mm CR 2032 Lithium Cell Disk Battery shown with 20 mm CR 2032 Lithium Cell Disk Battery shown with a U.S. Quarter: On the left is the Cathode (positive pole) and on the right the narrower Anode (negative pole).
Next:

Pathophysiology

Disk batteries do not usually cause problems unless they become lodged in the GI tract, nose, or ears. The most common place disk batteries become lodged, resulting in clinical sequelae, is the esophagus. Batteries that successfully traverse the esophagus are unlikely to lodge at any other location.

Batteries pass through the GI tract in a relatively short period of time: 23% within 24 hours, 61% within 48 hours, 78% within 72 hours, and 86% within 96 hours. Only 1% of batteries take more than 2 weeks.

Clinically significant outcomes (moderate, major, or fatal) occurred in only 1.3% cases from 1985-2009. [1] The likelihood that a disk battery lodges in the esophagus is a function of the patient's age (very young or old) and the size (diameter in mm) and type (chemical content) of the battery.

The larger size (20-25 mm batteries) is the most important predictor of a clinically significant outcome. Disk batteries of 16 mm have become lodged in the esophagi of 2 occurred in children who were younger than 4 years old. [1] Older children do not have problems with batteries smaller than 21-23 mm. For comparison, a dime is 18 mm, a nickel is 21 mm, and a quarter is 25 mm.

When the diameter of the battery is known, 94% of fatal cases or those with major outcomes involve batteries 20 mm or more in diameter. Lithium-containing batteries are more commonly associated with clinically significant outcomes than all other chemical types combined. Of ingested batteries that are 20-25 mm diameter, 99% are lithium cells.

Esophageal damage can occur in a relatively short period of time (2-2.5 h) when a disk battery is lodged in the esophagus. [1, 3]

Endoscopic view of disk battery in esophagus of a Endoscopic view of disk battery in esophagus of a child demonstrating esophageal burns.

Liquefaction necrosis may occur because sodium hydroxide is generated by the current produced by the battery (usually at the anode which is the flat surface without an imprint code or "+" sign). Perforation has occurred as rapidly as 6 hours after ingestion. The 20 mm lithium batteries are 3V cells as compared with 1.5V for other disk batteries. They have a higher capacitance and generate more current, which results in the production of more hydroxide more rapidly. [1] The most severe esophageal burns (and subsequent perforations) occur adjacent to the negative battery pole (anode). Injury can continue after endoscopic battery removal for days to weeks due to residual alkali or weakened tissues.

Previous
Next:

Epidemiology

Frequency

United States

From 1985-2009, 56,535 disk battery ingestions were reported to the National Poison Data System. [1] See the image below.

Exposures to disk batteries reported to the Americ Exposures to disk batteries reported to the American Association of Poison Control Centers, 1986-2009.

Mortality/Morbidity

Prognosis

The usual outcome of disk battery ingestions is an uneventful passage. More than 97% of disk battery ingestions have only mild effects or none at all. See image below.

NPDS button-battery ingestion frequency and severi NPDS button-battery ingestion frequency and severity (for moderate, major, and fatal outcomes), according to year.

Morbidity/mortality

Deaths due to button battery ingestion are rare. From 1985-2009, only 13 of 56,535 reported ingestions were fatal cases (0.02%). [1] Ingestion of a disk battery was initially missed by providers in 7 (54%) of the cases due to no initial history of ingestion and nonspecific presenting symptoms such as vomiting, fever, lethargy, poor appetite, irritability, wheezing, cough, and/or dehydration. Exsanguination due to esophageal fistulae occurred in 9 cases (69%), of which 7 were aortoesophageal.

Complications in major outcome cases have included tracheoesophageal fistulas, other esophageal perforations, esophageal strictures requiring repeated dilations, vocal cord paralysis from recurrent laryngeal nerve damage, mediastinitis, pneumothorax, pneumoperitoneum, tracheal stenosis, tracheomalacia, aspiration pneumonia, empyema, lung abscess, and spondylodiscitis. [1]

The possibility of heavy metal poisoning, especially from mercury, has been considered. A typical battery may contain from 15-50% mercuric oxide, leading to possible ingestion of as much as 5 g of mercury, a potentially lethal amount. This theoretical threat of toxicity has not been borne out by clinical experience. In a series of 2382 battery ingestions, no clinical evidence of mercury toxicity was observed. [4]

A spent cell, which no longer has enough power for the intended device, may still maintain considerable residual voltage. However, new cells are 3.2 times likely to be associated with clinically significant outcomes than spent cells. [1]

Retrograde movement of the battery from the stomach to the esophagus has been reported as a complication of use of ipecac syrup, necessitating emergent endoscopic removal. If the battery produces a mucosal burn, a theoretical risk exists of battery aspiration and perforation of the esophagus or stomach.

Sex

Male predominance (59%) is observed in disk battery ingestions.

Age

Children younger than 6 years account for 61% of ingestions, with a peak incidence in those aged 1 and 3 years. All fatalities from 1985-2009 and 85% of cases with major outcomes occurred in children who were younger than 4 years old and were often nonverbal. [1]

A second peak is observed in adults older than 60 years, with 10.3% of cases occurring in patients aged 60-89 years. Elderly patients are more likely to have batteries lodged in the small or large bowels. Patients older than 79 years account for only 4.6% of ingestions; in 31% of those cases, the battery lodges in the bowels.

Previous