Spinal Cord Injuries Treatment & Management

Updated: Nov 01, 2018
  • Author: Lawrence S Chin, MD, FACS, FAANS; Chief Editor: Brian H Kopell, MD  more...
  • Print

Approach Considerations

Admit all patients with an acute spinal cord injury (SCI). Depending on the level of neurologic deficit and associated injuries, the patient may require admission to the intensive care unit (ICU), neurosurgical observation unit, or general ward.

The most common levels of injury on admission are C4, C5 (the most common), and C6, whereas the level for paraplegia is the thoracolumbar junction (T12). The most common type of injury on admission is American Spinal Injury Association (ASIA) level A (see Neurologic level and extent of injury under Clinical).


Depending on local policy, patients with acute spinal cord injury are best treated at a regional spinal cord injury center. Therefore, once stabilized, early referral to a regional spinal cord injury center is best. The center should be organized to provide ongoing definitive care.

Other reasons to transfer the patient include the lack of appropriate diagnostic imaging (computed tomography [CT] scanning or magnetic resonance imaging [MRI]) and/or inadequate spine consultant support (orthopedist or neurosurgeon).


Consultation with a neurosurgeon and/or an orthopedist is required, depending on local preferences. Because most patients with spinal cord injury have multiple associated injuries, consultation with a general surgeon or a trauma specialist as well as other specialists may also be required.


Prehospital Management

Most prehospital care providers recognize the need to stabilize and immobilize the spine on the basis of mechanism of injury, pain in the vertebral column, or neurologic symptoms. Patients are usually transported to the emergency department (ED) with a cervical hard collar on a hard backboard. Commercial devices are available to secure the patient to the board.

The patient should be secured so that in the event of emesis, the backboard may be rapidly rotated 90° while the patient remains fully immobilized in a neutral position. Spinal immobilization protocols should be standard in all prehospital care systems.


Emergency Department Management

Most patients with spinal cord injuries (SCIs) have associated injuries. In this setting, assessment and treatment of airway, respiration, and circulation (ABCs) takes precedence.

The patient is best treated initially in the supine position. Occasionally, the patient may have been transported prone by the prehospital care providers. Logrolling the patient to the supine position is safe to facilitate diagnostic evaluation and treatment. Use analgesics appropriately and aggressively to maintain the patient's comfort if he or she has been lying on a hard backboard for an extended period.

Airway management

Airway management in the setting of spinal cord injury, with or without a cervical spine injury, is complex and difficult. The cervical spine must be maintained in neutral alignment at all times. Clearing of oral secretions and/or debris is essential to maintain airway patency and to prevent aspiration. The modified jaw thrust and insertion of an oral airway may be all that is required to maintain an airway in some cases. However, intubation may be required in others. Failure to intubate emergently when indicated because of concerns regarding the instability of the patient's cervical spine is a potential pitfall.

Hypotension, hemorrhage, and shock

Hypotension may be hemorrhagic and/or neurogenic in acute spinal cord injury. Because of the vital sign confusion in acute spinal cord injury and the high incidence of associated injuries, a diligent search for occult sources of hemorrhage must be made.

The most common sources of occult hemorrhage are injuries to the chest, abdomen, and retroperitoneum and fractures of the pelvis or long-bones. Appropriate investigations, including radiography or computed tomography (CT) scanning, are required. In the unstable patient, diagnostic peritoneal lavage or bedside FAST (focused abdominal sonography for trauma) ultrasonographic study may be required to detect intra-abdominal hemorrhage.

Neurogenic shock management and treatment goals

Once occult sources of hemorrhage have been excluded, initial treatment of neurogenic shock focuses on fluid resuscitation. Judicious fluid replacement with isotonic crystalloid solution to a maximum of 2 L is the initial treatment of choice. Overzealous crystalloid administration may cause pulmonary edema, because these patients are at risk for the acute respiratory distress syndrome (ARDS).

The therapeutic goal for neurogenic shock is adequate perfusion with the following parameters:

  • A systolic blood pressure (BP) of 90-100 mm Hg should be achieved; systolic BPs in this range are typical for patients with complete cord lesions. Compelling animal and human studies recommend maintenance of systolic BP above 90 mm Hg and to avoid any hypotensive episodes [4, 5]

  • The most important treatment consideration is to maintain adequate oxygenation and perfusion of the injured spinal cord; supplemental oxygenation and/or mechanical ventilation may be required [4, 5]

  • Heart rate should be 60-100 beats per minute (bpm) in normal sinus rhythm

  • Hemodynamically significant bradycardia may be treated with atropine

  • Urine output should be more than 30 mL/h; placement of a Foley catheter to monitor urine output and to decompress the neurogenic bladder is essential

  • Rarely, inotropic support with dopamine or norepinephrine is required; this should be reserved for patients who have decreased urinary output despite adequate fluid resuscitation; usually, low doses of dopamine in the 2- to 5-mcg/kg/min range are sufficient

  • Prevent hypothermia

Head injuries and neurologic evaluation

Associated head injury occurs in about 25% of patients with spinal cord injury. A careful neurologic assessment for associated head injury is compulsory. The presence of amnesia, external signs of head injury or basilar skull fracture, focal neurologic deficits, associated alcohol intoxication or drug abuse, and a history of loss of consciousness mandates a thorough evaluation for intracranial injury, starting with noncontrast head CT scanning.


Ileus is common. Placement of a nasogastric (NG) tube is essential. Aspiration pneumonitis is a serious complication in the patient with a spinal cord injury with compromised respiratory function (see Treatment of Pulmonary Complications and Injury). Antiemetics should be used aggressively.

Pressure sores

Prevent pressure sores. Denervated skin is particularly prone to pressure necrosis. Turn the patient every 1-2 hours. Pad all extensor surfaces. Undress the patient to remove belts and back pocket keys or wallets. Remove the spine board as soon as possible.


Steroid Therapy in SCI and Controversies

The National Acute Spinal Cord Injury Studies (NASCIS) II and III, [42, 43] a Cochrane Database of Systematic Reviews article of all randomized clinical trials, [44] and other published reports, have verified significant improvement in motor function and sensation in patients with complete or incomplete spinal cord injuries (SCIs) who were treated with high doses of methylprednisolone within 8 hours of injury.

NASCIS II and III trials

High doses of steroids or tirilazad are thought to minimize the secondary effects of acute SCI. The NASCIS II study evaluated a 30-mg/kg bolus of methylprednisolone administered within 8 hours of injury, whereas the NASCIS III study evaluated methylprednisolone 5.4 mg/kg/h for 24 or 48 hours versus tirilazad 2.5 mg/kg q6h for 48 hours. (Tirilazad is a potent lipid preoxidation inhibitor.)

Between the 2 studies, it was determined that: (1) in patients treated earlier than 3 hours after injury, the administration of methylprednisolone for 24 hours was best; (2) in patients treated 3-8 hours after injury, the use of methylprednisolone for 48 hours was best; (3) Tirilazad was equivalent to methylprednisolone for 24 hours. [43]

Both NASCIS studies evaluated the patients' neurologic status at baseline on enrollment into the study, at 6 weeks, and at 6 months and found absolutely no evidence suggests that giving the medication earlier (eg, in the first hour) provides more benefit than giving it later (eg, between hours 7 and 8). The authors concluded that there was only a benefit if methylprednisolone or tirilazad were given within 8 hours of injury. [43]

Controversy re results of NASCIS studies

Following the NASCIS trials, the use of high-dose methylprednisolone in nonpenetrating acute SCI had become the standard of care in North America. Nesathurai and Shanker revisited these studies and questioned the validity of the results. [45] These authors cited concerns about the statistical analysis, randomization, and clinical endpoints used in the study. In addition, the investigators noted that even if the benefits of steroid therapy were valid, the clinical gains were questionable. Other reports have also cited flaws in the study designs, trial conduct, and final presentation of the data.

The risks of steroid therapy are not inconsequential. An increased incidence of infection and avascular necrosis has been documented.

Revised recommendations

As a result of the controversy over the NACSIS II and III studies, a number of professional organizations have revised their recommendations pertaining to steroid therapy in SCI. [46, 47]

The Congress of Neurological Surgeons (CNS) has stated that steroid therapy "should only be undertaken with the knowledge that the evidence suggesting harmful side effects is more consistent than any suggestion of clinical benefit." [48] The American College of Surgeons (ACS) has modified their advanced trauma life support (ACLS) guidelines to state that methylprednisolone is "a recommended treatment" rather than "the recommended treatment." The Canadian Association of Emergency Physicians (CAEP) is no longer recommending high-dose methylprednisolone as the standard of care.

In a survey conducted by Eck and colleagues, 90.5% of spine surgeons surveyed used steroids in SCI, but only 24% believed that they were of any clinical benefit. [49] Note that the investigators not only discovered that approximately 7% of spine surgeons do not recommend or use steroids at all in acute SCI, but that most centers were following the NASCIS II trial protocol.

Updated guidelines issued in 2013 by the CNS and the American Association of Neurological Surgeons (AANS) recommend against the use of steroids early after an acute SCI. The guidelines recommend that methylprednisolone not be used for the treatment of acute SCI within the first 24-48 hours following injury. The previous standard was revised because of a lack of medical evidence supporting the benefits of steroids in clinical settings and evidence that high-dose steroids are associated with harmful adverse effects. [50, 51]


Two North American studies have addressed the administration of monosialotetrahexosyl ganglioside (GM-1) following acute spinal cord injury. The available medical evidence does not support a significant clinical benefit. It was evaluated as a treatment adjunct after the administration of methylprednisolone. [5, 52]


Overall, the benefit from steroids is considered modest at best, but for patients with complete or incomplete quadriplegia, a small improvement in motor strength in one or more muscles can provide important functional gains.

The administration of steroids remains an institutional and physician preference in spinal cord injury. Nevertheless, the administration of high-dose steroids within 8 hours of injury for all patients with acute spinal cord injury is practiced by most physicians.

The current recommendation is to treat all patients with spinal cord injury according to the local/regional protocol. If steroids are recommended, they should be initiated within 8 hours of injury with the following steroid protocol: methylprednisolone 30 mg/kg bolus over 15 minutes and an infusion of methylprednisolone at 5.4 mg/kg/h for 23 hours beginning 45 minutes after the bolus.

Local policy will also determine if the NASCIS II or NASCIS III protocol is to be followed.


Treatment of Pulmonary Complications and Injury

Treatment of pulmonary complications and/or injury in patients with spinal cord injury (SCI) includes supplementary oxygen for all patients and chest tube thoracostomy for those with pneumothorax and/or hemothorax.

The ideal technique for emergent intubation in the setting of spinal cord injury is fiberoptic intubation with cervical spine control. This, however, has not been proven better than orotracheal with in-line immobilization. Furthermore, no definite reports of worsening neurologic injury with properly performed orotracheal intubation and in-line immobilization exist. If the necessary experience or equipment is lacking, blind nasotracheal or oral intubation with in-line immobilization is acceptable.

Indications for intubation in spinal cord injury are acute respiratory failure, decreased level of consciousness (Glasgow score < 9), increased respiratory rate with hypoxia, partial pressure of carbon dioxide (PCO2) greater than 50 mm Hg, and vital capacity less than 10 mL/kg.

In the presence of autonomic disruption from cervical or high thoracic spinal cord injury, intubation may cause severe bradyarrhythmias from unopposed vagal stimulation. Simple oral suctioning can also cause significant bradycardia. Preoxygenation with 100% oxygen may be preventive. Atropine may be required as an adjunct. Topical lidocaine spray can minimize or prevent this reaction.


Surgical Intervention

Spine service consultants should determine the need for and timing of any surgical intervention. Currently, there are no defined standards existing regarding the timing of decompression and stabilization in spinal cord injury. The role of immediate surgical intervention is limited. Emergent decompression of the spinal cord is suggested in the setting of acute spinal cord injury with progressive neurologic deterioration, facet dislocation, or bilateral locked facets. Emergent decompression is also suggested in the setting of spinal nerve impingement with progressive radiculopathy and in those select patients with extradural lesions such as epidural hematomas or abscesses or in the setting of the cauda equina syndrome.

A prospective surgical trial, the Surgical Treatment for Acute Spinal Cord Injury Study (STASCIS) conducted by the Spine Trauma Study Group, is ongoing. Preliminary data from this study are showing that 24% of patients who receive decompressive surgery within 24 hours of their injury experience a 2-grade or better improvement on the ASIA scale, compared with 4% of those in the delayed-treatment group. Furthermore, the study found that cardiopulmonary and urinary tract complications were found to be 37% in the early surgery group compared with the delayed group rate of 48.6%. The hope is that the final data from STASCIS will better define the benefits and timing of early surgical decompression and stabilization.

A review article of spinal fixation surgery for acute traumatic spinal cord injury concluded that, in the absence of any randomized controlled studies, no recommendations regarding risks or benefits could be made. [53]

Previous studies from the 1960s and 1970s showed that the patients experienced no improvement with emergent surgical decompression, although 2 studies in the late 1990s appeared to show improved neurologic outcomes with early stabilization. Gaebler et al reported that early decompression and stabilization procedures within 8 hours of injury allowed for a higher rate of neurologic recovery. [54] Mirza et al reported that stabilization within 72 hours of injury in cervical spinal cord injury improved neurologic outcomes. [55]

Unfortunately, both the above studies and others were not prospectively controlled or randomized. In the only prospective, randomized, controlled study to determine whether functional outcome is improved in patients with cervical spinal cord injury, Vaccaro et al reported no significant difference between early (< 3 d, mean 1.8 d) or late (>5 d, mean 16.8 d) surgery. [56]



Neurologic deterioration, pressure sores, aspiration and pulmonary complications, and other complications following spinal cord injury (SCI) are briefly discussed in this section.

Neurologic deterioration

The neurologic deficit of spinal cord injury (SCI) often increases during the hours to days following acute injury, despite optimal treatment.

One of the first signs of neurologic deterioration is the extension of the sensory deficit cephalad. Careful repeat neurologic examination may reveal that the sensory level has risen 1 or 2 segments. Repeat neurologic examinations to check for progression are essential.

Pressure sores

Careful and frequent turning of the patient is required to prevent pressure sores. Denervated skin is particularly prone to this complication. Remove belts and objects from back pockets, such as keys and wallets.

Try to remove the patient from the backboard as soon as possible. Some patients may require spinal immobilization in a halo vest or a Stryker frame. Many patients with acute spinal cord injury have stable vertebral fractures yet needlessly spend hours on a hard backboard.

Aspiration and pulmonary complications

Patients with spinal cord injury are at high risk for aspiration. Nasogastric decompression of the stomach is mandatory.

Pulmonary complications in spinal cord injury are common. Such complications are directly correlated with mortality, and both are related to the level of neurologic injury. Pulmonary complications of spinal cord injury include the following:

  • Atelectasis secondary to decreased vital capacity and decreased functional residual capacity

  • Ventilation-perfusion (V/Q) mismatch due to sympathectomy and/or adrenergic blockade

  • Increased work of breathing because of decreased compliance

  • Decreased coughing, which increases the risk of retained secretions, atelectasis, and pneumonia

  • Muscle fatigue

Other complications

Severe sepsis or pneumonia frequently follows treatment with high-dose methylprednisolone that is frequently used in spinal cord injury.

Prevent hypothermia by using external rewarming techniques and/or warm humidified oxygen.