Wrist Fracture in Emergency Medicine Clinical Presentation

Updated: Feb 14, 2015
  • Author: Bryan C Hoynak, MD, FACEP, FAAEM; Chief Editor: Trevor John Mills, MD, MPH  more...
  • Print
Presentation

History

History for wrist fracture includes the following:

  • Fall onto an outstretched hand
  • Direct trauma
Next:

Physical

Physical examination should begin with inspection of the injured extremity using the uninjured extremity as a comparison. The site of injury may be identified by ecchymosis or swelling. Fractures of the distal radius may have characteristic deformities. Look for any evidence of a break in the skin indicating an open fracture. Palpation with localization of the point of maximal tenderness further defines the injury.

  • With scaphoid fractures, the point of maximal tenderness lies in the anatomic snuffbox, which lies between the tendons of the extensor pollicis brevis and abductor pollicis longus. Radial deviation of the wrist or axial loading of the first metacarpal may increase pain.
  • The lunate can be localized just distal to the Lister tubercle, which is palpable on the dorsal radius. Axial loading of the third metacarpal may increase pain with a lunate injury. In addition, lunate fractures may be associated with point tenderness over the lunate fossa (located distal to the radius at the base of the long finger metacarpal).
  • The classic finding in a Colles fracture is the so-called dinner fork deformity, which is produced by dorsal displacement of the distal fracture fragments. A Smith fracture may show an obvious volar displacement of the wrist relative to the forearm, known as a garden spade deformity.
  • Examine the remainder of the injured extremity for tenderness or other signs of injury to exclude an associated injury to the elbow, upper arm, or shoulder. Particularly with injuries to the lunate, capitate, and pisiform, which represent high-energy mechanisms, maintain a high suspicion for concomitant injury to other structures of the wrist. A practical piece of advice is to examine last the region identified by the patient as the most painful; this prevents additional pain from the physical examination from masking more subtle injuries to other structures.
  • Next, assess the neurovascular integrity of the injured extremity. Evaluate pulses in the brachial and radial arteries. Look for any evidence of impaired circulation such as cyanosis or pallor. Injuries to the ulnar aspect of the hand, particularly those involving the pisiform, hamate, and triquetrum, may place the deep branch of the ulnar artery at risk as it travels beneath the hook of the hamate. The radial artery can be jeopardized with any significant displacement of the distal radius.
  • The hand is innervated by 3 nerves, the radial, ulnar, and median. Assess their integrity in all injuries. The deep branch of the ulnar nerve, which supplies most of the intrinsic muscles of the hand, runs with the ulnar artery beneath the hook of the hamate and is vulnerable with injuries to the pisiform, hamate, and triquetrum. Injuries at this point spare the sensory function of the ulnar nerve, which branches more proximally. The median nerve is particularly vulnerable with injuries to the lunate and the distal radius. It may be compromised by swelling, resulting in an acute carpal tunnel syndrome, or it may be injured directly. The sensory branch of the radial nerve may be compromised with a dorsally displaced Barton fracture.
Previous
Next:

Causes

Causes of wrist fracture are as follows:

  • Distal radius, scaphoid, and lunate fractures usually are the result of a fall on an outstretched hand.
  • Wrist fractures may be caused by hyperflexion mechanisms and by direct blows to the wrist.

Scaphoid navicular

Other mechanisms of injury have recently come to light in addition to a fall on the outstretched hand with hyperextension. These include forced palmar flexion of the wrist with axial loading of the wrist in a fixed position and hyperpronation. [4]

Previous