Wrist Fracture in Emergency Medicine Treatment & Management

Updated: Feb 14, 2015
  • Author: Bryan C Hoynak, MD, FACEP, FAAEM; Chief Editor: Trevor John Mills, MD, MPH  more...
  • Print
Treatment

Prehospital Care

The injured extremity should be splinted gently from above the elbow to the hand to prevent additional injury from inadvertent manipulation.

As with all trauma, address the possibility of additional injuries. Attend to ABCs, and use spine precautions if indicated by history and mechanism.

Urgent reduction of fractures may be necessary when neurovascular status has been compromised. This should be completed in the prehospital setting only when estimated ED arrival is more than 6 hours after the time of injury.

Next:

Emergency Department Care

In the ED, obtain a thorough history. Exclude additional injuries, and, if warranted, provide a full trauma evaluation. Maintain gentle, temporary splinting when not directly examining the injured wrist.

Wrist fractures are managed by reduction and immobilization following administration of adequate anesthesia and analgesia. Such reductions are typically performed by emergency physicians or orthopedic surgeons. [11]

Prior to closed reduction and fixation but after a careful neurovascular examination, administer proper sedation/anesthesia for the following 2 reasons: (1) to reduce or eliminate discomfort to the patient and (2) to reduce muscle spasm and splinting, which allow easier reduction and stabilization.

Options for analgesia or anesthesia prior to closed reduction include parenteral narcotics, conscious sedation, local/regional blocks, and hematoma blocks. Oral analgesics are suitable only for those injuries that do not require manipulation.

Conscious sedation increasingly is becoming the method of choice as more emergency physicians become skilled in its use. Properly performed, conscious sedation provides excellent anesthesia and muscle relaxation and leaves the patient with little or no recall of the event.

Hematoma block is performed by inserting a needle into the area of the fracture, aspirating blood to confirm placement, and injecting local anesthetic. The skin should be well prepared to avoid introduction of bacteria into the fracture site. For either hematoma or regional blocks, 0.5% bupivacaine (Marcaine) is ideal because of its low toxicity and long duration of action. For hematoma blocks, 10 mL of 0.5% bupivacaine is injected into the hematoma and another 5 mL is injected around the site. Allow 10-15 minutes prior to attempting manipulation.

Brachial block, while providing excellent anesthesia, is best left to those skilled in its use.

Reduction and immobilization

Always assess and document neurovascular status before starting reduction. Accurate reduction of the fracture is essential to obtaining good functional results. Early reduction lessens morbidity and improves patient comfort. Anatomic reduction is obtained by manipulation and plaster fixation and confirmed by repeat radiographs, portable fluoroscopy, or bedside ultrasonography. Anatomic reduction of distal radius fractures, both Colles and Smith fractures, are difficult to judge clinically. Ang et al adds ultrasonography to the traditional approach and offers the clinician a noninvasive way to identify proper alignment prior to post reduction radiographs. [12] The method of immobilization varies with the specific injury involved.

Colles fracture

The 2 keys to successful reduction of the typical Colles fracture are as follows:

  • Place the hand and wrist in the position of injury and pronate the forearm, which corrects the supination twist of the distal fractured segment. This can be performed with the aid of the Weinberg finger traction apparatus or with an assistant to fix the arm at the elbow. By recreating the mechanism of injury and the position of the bony fragments at injury, the periosteal ligaments are relaxed, which allows for easier reduction of the fracture.
  • Extend the wrist to 90°, with the elbow fixed and the forearm supinated, and pull the distal segment back, up, and out at approximately 120°. Use both thumbs to push the distal fragment into alignment as the arm is pronated.

ED treatment includes application of a plaster sugar-tong splint with the wrist held in slight flexion, with slight ulnar deviation and pronation of the forearm.

Obtain postreduction radiographs; assess and document neurovascular status of the extremity after reduction. Document function of the median nerve and the sensory branch of the radial nerve.

Smith fracture

For proper reduction of a Smith fracture, the forearm must be supinated fully while the elbow is fixed by an assistant or with the aid of the Weinberg traction device.

Extend the wrist to 90° and fully supinate the forearm. Then, recreate the position of the hand at injury to relax the periosteal attachments. Move the hand into the hyperflexed position and reduce the fracture segment with traction at approximately negative 60° while moving the fragments into alignment along the volar aspect of the wrist, pushing the fragment upwards and backwards with the thumbs. The wrist is forced into ulnar deviation and dorsiflexion for reduction. This position is held until a plaster sugar-tong splint is placed.

These fractures are very difficult to hold in position, especially if dorsiflexion and ulnar deviation is lost during application of the plaster.

Postreduction radiographs and documentation of the neurovascular status of the extremity is the standard of care.

Volar and dorsal dislocations

For volar dislocations, the hand is hyperpronated. For dorsal dislocations, it is hypersupinated. A sugar-tong splint is then placed. For volar dislocations, the hand is splinted fully pronated, whereas for dorsal dislocations, the hand is splinted in supination.

Appropriate consultation by an orthopedist must follow within the next 48 hours.

Scaphoid fractures

The diagnosis of scaphoid fracture is often made on clinical suspicion alone.

Immobilize the wrist in all patients with documented or suspected fractures.

Place the injured extremity in either a short- or long-arm thumb spica case with the distal interphalangeal (DIP) joint of the thumb included. The length of the cast remains controversial; however, the long-arm thumb spica has been demonstrated to improve rotational stability. Orthopedic follow-up is required.

Other carpal fractures

Lunate fractures require a short-arm spica cast or splint with thumb immobilization.

Emergency treatment of capitate, trapezium, and trapezoid fractures consists of position of function and orthopedic consultation. The isolated triquetral avulsion fracture can be treated with splint immobilization for 3-6 weeks. Midcarpal and ulnar side wrist instability must be ruled out before assuming that this is the correct treatment. The clinical examination should include a lunate-triquetral shear test to rule out lunotriquetral interosseous ligament tears, [13] and midcarpal instability should be evaluated with an axial compression and ulnar deviation test. [14] If ligamentous instability is suspected, an MRI is indicated for further evaluation.

Fractures of the pisiform can be immobilized with a volar splint.

Injuries to the triquetrum are best treated with a sugar-tong splint.

Treatment of a hamate fracture involves a short-arm cast with the fourth and fifth MCP joints held in flexion.

Pronation and supination injuries

Management of wrist articular injuries exactly mirrors the mechanism of injury. For example, with pronation injuries, the hand is supinated with the elbow held flexed at 90°. With a supination injury, pronation corrects the defect.

Nerve injury

Upon presentation and after treatment, the ED physician must evaluate the neurovascular status of the extremity. Careful note must be taken of ulnar and median nerve function.

The ulnar nerve is often injured with closed fractures of the pisiform, triquetrum, hamate, and fourth and fifth metacarpals.

The motor branch of the ulnar nerve is the chief motor nerve of the hand. The sensory branch rarely is affected. Blunt trauma to the hypothenar eminence may result in contusion to the ulnar nerve, with resulting neurapraxia. If a large hematoma is present, it may be aspirated or surgically removed after appropriate consultation.

Median nerve injury, including traumatic carpal tunnel syndrome, is manifested by sensory disturbances in the thumb and index and long fingers.

Median nerve injury is associated with Colles fractures, Smith fractures, perilunate dislocations, and carpal bone injuries. Compression along the volar ligament results in pain and paresthesias along the median nerve. Only late in this disorder does the thenar eminence exhibit muscle atrophy.

Recognition of the injury and referral for consultation is the aim of the ED physician. If an acute injury is secondary to a displaced fracture, and physical signs indicate compression of the nerve, acute reduction of the displaced fracture is indicated.

Previous
Next:

Consultations

Obtain immediate consultation with a hand specialist or orthopedic surgeon for open or unstable fractures and those requiring fixation.

All other fractures should have adequate orthopedic follow-up care to ensure proper wrist function.

Previous