Middle Ear, Tympanic Membrane, Perforations Treatment & Management

Updated: May 07, 2020
  • Author: Matthew L Howard, MD, JD; Chief Editor: Arlen D Meyers, MD, MBA  more...
  • Print

Medical Therapy

Medical therapy for perforations is directed at controlling otorrhea. Take into account ototoxicity risk from topically applied eardrops when treating ear infections concurrent with tympanic membrane perforation (TMP). Infection alone occasionally can cause sensorineural hearing loss. Clinical toxicity from eardrops in the presence of ear infection has not been demonstrated unequivocally, although experiments in animals clearly demonstrate a correlation. Legal implications of administration of ototoxic eardrops preceding sensorineural hearing loss are clear. For this reason, avoid eardrops containing gentamicin, neomycin sulfate, or tobramycin in the presence of tympanic membrane perforation (TMP). When they are used, substitute a less toxic alternative as soon as drainage and mucosal edema begin to subside. Avoiding contamination of the middle ear space with water via the tympanic membrane perforation (TMP) is critical in minimizing otorrhea from a perforation.

A retrospective study of patients with traumatic tympanic membrane perforation greater than one quarter the size of the membrane found that topical application of either epidermal growth factor (EGF) or ofloxacin otic drops reduced healing time over that associated with observation.  Healing with EGF and ofloxacin otic drops took a mean 12.6 and 12.9 days, respectively, compared with 35.7 days for observation. The actual closure rates for the three treatment methods, however, did not differ significantly. [13]

A prospective study by Lou et al also found ofloxacin otic drops to be effective, reporting reduced closure time in medium- and large-sized traumatic tympanic membrane perforations. In this study, which included 145 patients, closure rates for large perforations were higher for the ofloxacin group than for patients treated with observation. [14]

Systemic antibiotics are occasionally used when controlling otorrhea from a TMP. Antibiotics (eg, trimethoprim-sulfamethoxazole, amoxicillin) directed at typical respiratory flora suffice in most cases. Overgrowth with Pseudomonas aeruginosa or resistant Staphylococcus aureus may occur. Failure of drainage to clear after several days' therapy may require alteration of therapy following culture and sensitivity tests. A tendency of the ear canal to pseudomonad overgrowth indicates that the most accurate testing can be obtained by suctioning a culture specimen (under microscopic control) directly from the middle ear through the perforation.

Under routine circumstances, the surface tension of water may prevent it from entering the middle ear through a small perforation. The addition of soap reduces the water tension. The ear is therefore at greater risk of infection during hair-washing or bathing than from plain water.


Surgical Therapy

Treatment of tympanic membrane perforation (TMP) falls into 3 categories. No treatment is necessary for nonswimming patients with minimal hearing loss and no history of recurrent ear infection. A hearing aid may prove the only necessary treatment for patients with symptomatic hearing loss but no infection or swimming history. Two options exist for patients who are not in either category.

Office treatments

The first option is to perform one of the available office treatments. Such treatments have the best chance of working when the perforation is small and involves neither the umbo nor the annulus. Several methods apply.

The simplest, but least effective, method is to cauterize the edges of the tympanic membrane perforation (TMP) with a caustic, such as trichloroacetic acid (10% solution), and then apply a small patch of cigarette paper. This technique was developed in the 1800s; it presumably remains in the repertoire because it sometimes works. Mechanical stripping of the perforation margin (with topical anesthetic or without) before applying the patch slightly increases the success rate.

A fat-plug tympanoplasty can be performed. Obtain a small plug of fat from the postauricular sulcus with the patient under local anesthesia. Prepare the tympanic membrane perforation (TMP) by anesthetizing its margins with carefully applied phenol solution. Next, mechanically débride the edges with microcup forceps. The fat is then tucked into the perforation, extending both into the canal and into the middle ear space.

The paper-patch method has a reported success rate of 67%; the fat-plug tympanoplasty of 87%. [15]

Niklasson and Tano studied the use of a Gelfoam plug in combination with surgical removal of the perforation edges. They concluded that although additional comparative studies are recommended, the plug seems to result in about the same closure rate as the fat plug technique in persistent small ear drum perforations. [16]

Another successful office treatment, which has the major disadvantage of requiring 6-10 weekly postsurgical office visits, is the irritant oil method.

In this method, freshen the perforation by stripping the margin using microcup forceps. Performed carefully, this can often be accomplished without anesthetic. If necessary, use a small amount of phenol solution for anesthesia. Apply a cotton ball that is 1-2 mm larger than the diameter of the perforation to the tympanic membrane perforation (TMP). The patient then instills a solution of irritative and aromatic oils daily into the ear. The solution is dispensed in 30-mL dropper bottles and is formulated by the pharmacy (all substances United States Pharmacopoeia [USP] grade) as 2 mL eucalyptol, 1.10 mL methyl salicylate, 0.39 g thymol, 0.455 g menthol, 1.20 mL oil of orange, 20.25 g sifted powdered sodium borate, 20.25 g powdered boric acid, 60 mL of 90% ethyl alcohol, saffron to suit for color, and water in a sufficient quantity to make 5000 mL. Change the cotton weekly. Repeat edge freshening if no progress is seen.

This nonsurgical method was initially reported to have a 70% success rate, and this author has obtained similar results using it as the sole therapy for perforations occupying less than 25% of the drum area. [17, 18]

Other recently reported forms of office treatment use fibrin glue or a patch composed of a hyaluronic acid ester and a dressing component. The use of basic fibroblast growth factor with a proprietary patch that consists of a silicone layer and atelocollagen has been described. Excellent success has been reported, but with very small numbers of patients. Time will tell if these new techniques will prove useful additions to treatment options.


The second option is to perform tympanoplasty with the patient under local or general anesthesia. An incision may be made behind the ear or entirely through the ear canal, depending on the location and size of the tympanic membrane perforation (TMP). Repair requires preparation of a suitable bed for placement of a graft. By far, the most commonly used grafting material is postauricular fascia. Allograft tympanic membranes obtained from cadavers, once abandoned because of fear of transmitting viral pathogens, are again being used. Other substances, such as the urinary bladder matrix, are being evaluated. [19] Grafts may be placed medially or laterally to the perforation, or in a combined position. [1] Surgeon preference plays a part in these decisions and in decisions concerning the technical problems associated with size and location of the perforation and the shape, angle, and bore of the ear canal.

Tympanoplasty successfully closes the tympanic membrane perforation (TMP) in 90-95% of patients. Fortunately, second and third operations succeed in more than 90% of the remaining patients. Consequently, fewer than 1 per 1000 persons still has tympanic membrane perforation (TMP) after 3 operations.

A retrospective study by Carr et al indicated that in adults undergoing myringoplasty (type 1 tympanoplasty), the perforation site affects the success of the procedure, with the closure rate significantly reduced for anterior and subtotal perforations. In the study’s pediatric patients, however, the perforation site appeared to have no such affect. [20]

A study by Tseng et al reported successful subjective and objective outcomes in tympanic perforation repair with endoscopic transcanal myringoplasty. Graft success was achieved by 3 months postoperatively in 87.9% of ears, with the air-bone gap closed to within 20 dB in 86.8% of ears. Pain medication was used for a mean duration of 2.0 days, with the mean pain scale score determined to be 0.1 on the third postoperative day. [21]

A retrospective study by Larrosa et al indicated that in the transcanal, endoscopic repair of subtotal tympanic membrane perforations (TMPs) in adults, results from the use of palisade cartilage grafts are comparable to those from employment of the one-piece composite cartilage-perichondrium technique, with closure rates of 85% and 86.3%, respectively. Hearing improvement was also similar with both techniques. [22]

Inlay versus underlay surgery

A study by Haksever et al found that inlay butterfly transcanal cartilage tympanoplasty compared favorably with conventional underlay tympanoplasty in patients with dry, perforated chronic otitis media. The investigators examined results from 72 patients, 29 of whom underwent the inlay butterfly cartilage procedure and 43 of whom were treated with conventional underlay surgery. The tympanic-membrane closure rate and audiologic results were similar for the two techniques, but the average duration of surgery for inlay tympanoplasty was about half of that for the other operation (29.9 minutes vs 58.9 minutes, respectively). [23]

Similar results were reported in a study by Kim et al, in which 56 patients underwent inlay butterfly cartilage tympanoplasty, and another 56 individuals were treated with conventional underlay tympanoplasty. Surgical and functional success were comparable between the two procedures, but the duration of the inlay surgery was again about half of that for the underlay technique. Moreover, the visual analogue ̶ scale score for perioperative pain was lower for the inlay operation than it was for the underlay surgery (1.5 vs 4.9, respectively). [24]

A literature review by Jumaily et al found that tympanic membrane perforation closure rates for inlay butterfly transcanal cartilage tympanoplasty ranged from 71-100%. In a separate cohort, of pediatric and adult patients, the investigators reported complete closure in 21 of 32 perforations (66%) repaired with the procedure, with the mean air-bone gap dropping from 13.4 dB to 6.9 dB. [25]


Preoperative Details

Preoperative preparation of the ear for surgery consists of eliminating infection whenever possible. Preoperative preparation of the patient includes convincing the smoker to stop during the immediate postoperative period.


Intraoperative Details

The first known incident of tympanoplasty performed on the wrong ear occurred in 2004. Surgeons are therefore advised to adopt methods similar to those used in other fields, and mark the ear to be operated upon with ink while the patient is awake and able to confirm the accuracy of the selection.


Postoperative Details

Postoperative care is identical for office treatment and operating room repair techniques. Instruct patients to keep water out of their ears. When incisions and ear canal packing are present, use protective dressings, which are commercially available. Otherwise, silicone rubber plugs (also commercially available) or cotton balls waterproofed with a little petroleum jelly suffice.



Risk of cholesteatoma formation, either through the natural course of the disease or from squamous epithelium trapped during treatment, requires regular follow-up care for all patients postoperatively. Several annual visits should be the minimum once tympanic membrane perforation (TMP) healing is verified. Untreated tympanic membrane perforation (TMP) may not require regular follow-up care if a patient can be relied upon to seek medical advice if hearing changes or persistent drainage from the ear is noted. Location of the tympanic membrane perforation (TMP) informs the timing and frequency of follow-up care. Perforations in the pars tensa (stiff portion of the drum) rarely lead to complications.

The exceptions are pars tensa perforations located at the annulus or rim of the tympanic membrane. Tympanic membrane perforations (TMPs) in this location are at risk of developing middle ear cholesteatoma from migration of surface epithelium into the middle ear. Perforations in the pars flaccida (the portion without a fibrous center layer) are more frequently associated with complications and require more frequent follow-up care.

For excellent patient education resources, visit eMedicineHealth's Ear, Nose, and Throat Center. Also, see eMedicineHealth's patient education article Perforated Eardrum.



Each operation carries a risk of exacerbating hearing loss. Exact incidence of such hearing loss is unclear, with reported rates varying widely in the medical literature. In one series, approximately 1 per 500 operations resulted in much worse hearing. In another, the rate was nearly 2% for some degree of loss. Of 1000 patients, expect one to experience a perforation and 4 to endure lost hearing. In a small group of patients, persistent eustachian tube dysfunction leads to late complications, such as cholesteatoma, reperforation, or middle ear effusion. When the underlay technique of tympanoplasty is used, incidence of intratympanic cholesteatoma is less than 1%. [15] These complications each require unique treatment.


Outcome and Prognosis

Uncomplicated tympanic membrane perforation (TMP) requires no treatment. Perforations remain stable, and prognosis for absence of morbidity is good. Repaired drums reperforate in as many as 10% of patients. Potential for late perforation and the potential for formation of cholesteatoma mandate regular follow-up care for many years after apparently successful surgery.