Femoral Neck Fracture Clinical Presentation

Updated: Jan 19, 2016
  • Author: Gerard A Malanga, MD; Chief Editor: Sherwin SW Ho, MD  more...
  • Print
Presentation

History

Establishing a diagnosis in an athlete experiencing groin or hip pain with ambulation begins with a detailed history and physical examination. The basic history should include a temporal account of the patient's symptoms and a complete description of complaints. The clinician should ask the patient whether the symptoms are associated with participation in a specific sport or activity. A comprehensive training history should be obtained, and recent changes in activity level, equipment, intensity levels, and technique should be noted.

  • A careful menstrual history should be obtained from all female patients. Amenorrhea is often associated with decreased serum estrogen levels. Lack of protective estrogen leads to decreases in bone mass. The female athlete triad of amenorrhea, osteoporosis, and disordered eating affects many active women. Signs and symptoms of the female triad include the following:

    • Fatigue

    • Anemia

    • Depression

    • Cold intolerance

    • Lanugo

    • Eroded tooth enamel

    • Use of laxatives

  • Poor eating habits can lead to disturbances of the endocrine, cardiovascular, and gastrointestinal systems and to irreversible bone loss. The clinician should be alert to stress fractures and understand the possible signs of the female athlete triad, particularly noting unusual fractures that occur from minimal trauma.

  • Most athletes describe an insidious onset of pain over 2-3 weeks, which corresponds with a recent change in training or equipment. Typically, runners have recently increased their mileage or intensity, changed their terrain, or switched running shoes. The physician should inquire about the individual's training log and mileage.

  • Features common to all stress fractures include the following:

    • Participation in repetitive cyclic activity

    • Insidious onset of pain

    • Recent change in activity or equipment

    • Atraumatic history

    • Pain with weight bearing

    • Relief of pain with rest

    • Menstrual irregularities

    • Predisposing osteopenia

  • Patients usually report a history of gradual- or acute-onset anterior hip, groin, or knee pain that worsens with exercise. A typical feature of a stress fracture is a history of exercise-related localized pain that increases with activity and either abates with rest or persists with less forceful activity. Pain progressively worsens with continued training. The pain is reproducible with repeated activity, and it is relieved with rest.

  • The examiner should inquire whether these symptoms have occurred in the past, and, if so, whether the patient tried using ice or heat or any medications (eg, acetaminophen, aspirin, nonsteroidal anti-inflammatory drugs [NSAIDs]). Questions should be asked about previous participation in a physical therapy program, and the physician should attempt to understand the treatment plan used.

Next:

Physical

A comprehensive physical examination of the athlete with groin or hip pain should include an in-depth evaluation of the neurologic and musculoskeletal systems. Combining the findings from the history and physical examination should increase the overall predictive value of the evaluation process. The degree and type of fracture usually dictate the severity of clinical deformity.

  • Inspection: The examination begins with observation of the patient during the history portion of the evaluation. Note any grimacing or abnormal gait patterns. Patients with displaced femoral neck fractures are usually unable to stand or ambulate. Observe the iliac crest for any difference in height, which may indicate a functional leg-length discrepancy. Alignment and length of the extremity is usually normal; however, the classic presentation of patients with displaced fractures is a shortened and externally rotated extremity. Assessing for any muscle atrophy or asymmetry is also important.

  • Palpation: Determine any tender points in the anterior groin and hip regions. The most common physical feature of stress fractures in general is local bony tenderness; however, the neck of the femur is relatively deep and bony pain or tenderness may be absent. Palpate the trochanter for any tenderness that might indicate trochanteric bursitis.

  • Range of motion: Determine the range of motion for hip flexion, extension, abduction, adduction, and internal and external rotation and for knee flexion and extension. Findings include pain and restriction at the end of passive range of motion at the hip. Perform a passive straight-leg raise, Thomas, and rectus femoris stretch test. Examine the iliotibial band by performing the Ober test.

  • In addition to range of motion of the hip, assess the spine and other lower extremity joints, because pain referral patterns may be confusing. Examine the low back both actively and passively, looking at forward flexion, side bending, and extension. Perform a straight-leg raise test and tests for the Lasegue and Bragard signs. A patient with anterior thigh and knee pain may actually have pathology at the hip joint. Reproduction of the patient's pain with hip internal rotation, external rotation, or other provocative maneuvers may further distinguish hip pathology from spine involvement.

  • Muscle strength: Manual muscle testing is important to determine whether weakness is present and whether the distribution of weakness corresponds to any nerve injuries. Additionally, evaluate the dynamic stabilizers of the pelvis, including hip flexors, extensors, and abductors. A Trendelenburg gait pattern is indicative of hip abduction weakness. Test hip flexion (L2, L3), extension (L5, S1, S2), abduction (L4, L5, S1), and adduction (L3, L4).

  • Sensory examination: Upon sensory examination, a dermatomal decrease or loss of sensation can indicate or exclude any specific nerve damage. Muscle stretch reflexes are helpful in the evaluation of patients presenting with hip pain. Abnormal reflexes can indicate nerve root abnormality. The asymmetry of reflexes is most significant; therefore, a patient's reflexes must be compared with the contralateral side.

  • Hop test: Approximately 70% of patients with stress fractures of the femur demonstrate a positive hop test result. The hop test involves the patient hopping on the affected leg to reproduce symptoms. Other maneuvers that can place a stress on the femur also may reproduce pain.

Previous
Next:

Causes

Training errors are the most common risk factors for femoral neck fractures, including a sudden increase in the quantity or intensity of training and the introduction of a new activity. Other factors include low bone density, abnormal body composition, dietary deficiencies, biomechanical abnormalities, and menstrual irregularities.

  • Predisposing factors, such as anatomic variations, relative osteopenia, poor physical conditioning, systemic medical conditions that demineralize bone, or temporary inactivity, can make bone more susceptible to stress fractures. As reported by Monteleone, studies have indicated that women have an increased incidence of stress fractures, which may be the result of anatomic variations. [15] Women tend to direct axial force during weight bearing along different axes of long bones compared with men. Women also have 25% less muscle mass per body weight than men. This may concentrate, rather than dissipate, the stabilizing forces through the bony anatomy.

  • Markey reported that Hersman et al documented women have a higher incidence of stress fractures. [12] This higher incidence is partly a result of mechanical differences and anatomic variations between men and women. Differences in women include various stride lengths, number of strides per distance, a wider pelvis, coxa vara, and genu valgum.

  • Exercise-induced endocrine abnormalities are well known to result in amenorrhea or nutritional deficiencies, which can lead to bone demineralization and can place these patients at risk for various overuse injuries. Stress fractures, especially in trabecular bone, have shown a decrease in bone mineral content. This decrease can be reproduced by a decrease in circulating estrogen, which is observed in amenorrheic female athletes. Lack of protective estrogen leads to a decrease in bone mass. The female athlete triad of amenorrhea, osteoporosis, and disordered eating affects many active women. Irreversible bone loss places the patient at a higher risk for fractures.

  • Most people are not competitive athletes and may not be at a level of optimum fitness. Individuals often force themselves to participate at a level for which they are not physically fit. Flexibility, muscle strength, and neuromuscular coordination contribute to injuries when individuals are not properly trained.

Previous