Femoral Neck Stress Fracture Clinical Presentation

Updated: May 31, 2017
  • Author: Scott D Flinn, MD; Chief Editor: Sherwin SW Ho, MD  more...
  • Print


Runners and military trainees develop stress fractures as the duration, frequency, and intensity of weight-bearing activities is increased. Furthermore, changes in running surfaces, such as from a flat surface to hills, or carrying a pack may increase the risk of stress fractures.

The patient reports a gradually worsening deep, achy pain in the hip, groin, or thigh.

Usually, pain initially occurs after an activity. As the stress of training continues, pain occurs during training and becomes more intense.

Unless the form of the activity is modified, the pain gradually worsens over a few weeks to the point where the patient is unable to walk without pain.

Continued activity will probably result in completion of the stress fracture.



Physical examination reveals the patient to have an antalgic gait.

Unlike many other stress fractures, it is not possible to palpate the femoral neck and determine the presence of the usual bony tenderness of a stress fracture. However, hip palpation may suggest another diagnosis, such as a hip flexor strain, if pain is present at the anterior inferior iliac spine and upon hip flexion. It is difficult to determine if anterior hip pain is due to a hip flexor strain or an FNSF by examination alone. Other possible diagnoses include greater trochanteric bursitis, adductor strain, or a pubic ramus stress fracture. (See also the articles Trochanteric Bursitis [in the Sports Medicine section], Adductor Strain [in the Physical Rehabilitation and Medicine section], and Pelvic Fractures [in the Orthopedic Surgery section].)

Pain at the extremes of passive range of motion (ROM), especially external and internal rotation, is the most sensitive sign for stress fractures.

Pain that is associated with log rolling, axially loading a supine patient (heel tap), and with single-leg standing or hopping also suggests a stress fracture. (Note: Performing a single-leg hopping test in a patient with a potential FNSF is risky and may cause completion of the stress fracture; this practice is not advised.)



Improper training is the most obvious cause for a stress fracture. Increasing the duration, frequency, and/or intensity of training too quickly does not allow for proper bone and supporting muscle adaptation, resulting in microscopic damage to the bone, which cannot be healed quickly.

In the military population, trainees who have initially lower levels of fitness and higher body mass indexes are at an increased risk of stress fractures. [1] A history of a previous stress fracture is also a risk factor for a recurrence. In addition, coxa vara has been associated with an increased risk of FNSF. [10] Finally, a study on male US Marine Corps recruits showed a higher risk of stress fracture with low body weight and small femoral diaphysis. [11]

Other hypothesized risk factors for FNSF include improper footwear, leg-length discrepancies, and a change of the running surface.

Females with the female athlete triad (ie, disordered eating, menstrual dysfunction, premature osteoporosis) are also at increased risk for stress fractures. (See also the article Female Athlete Triad.)

Young women who perform weightbearing exercise regularly can increase the bone density of their femoral neck. [12]

Plebes undergoing training at the US Naval Academy who had significant weight loss and smaller muscle mass were associated with a much higher incidence of stress fracture than their fitness-matched cohorts. [3]

A study by Goldin et al suggested that femoral neck stress injury patients have a higher incidence of bony abnormalities associated with pincer impingement, including coxa profunda and acetabular retroversion, however, further studies are needed to evaluate this relationship. [13]