Nasal Reconstruction 

Updated: Aug 12, 2022
Author: Ali Sajjadian, MD, FACS; Chief Editor: Arlen D Meyers, MD, MBA 



The nose is arguably the most prominent aspect of the face. Reconstruction of the nose involves alterations and aesthetic details that cannot be easily hidden with clothing or apparel. The extreme 3-dimensionality of the nose allows slight structural modifications to have great ramifications. Thus, the reconstruction of a defect in the nose is all the more difficult because of the great many nuances the nose possesses.

An depicting the aesthetic subunits of the nose can be seen below.

Aesthetic subunits of the nose: Nasal dorsum (blue Aesthetic subunits of the nose: Nasal dorsum (blue), alar crease (green), nasal tip (red), soft triangle (yellow), columella (orange), and nasal ala (purple).

History of the Procedure

The reconstruction of the nose goes back thousands of years. The ancient Hindus are credited with the first nasal reconstruction attempts. In ancient India, punishment involved having one's nose cut off, and such a defect was reportedly first repaired by transposing a cheek flap. The Italians also used reconstructive techniques for the nose during the Renaissance. The Branca family and Tagliacozzi experimented with flaps and rhinoplasty techniques. However, the British documented the Indian techniques of reconstruction they saw during their time in the subcontinent. Gillies, of England, formulated rules and techniques for nasal reconstruction. These efforts were passed on, expanded, and refined to form the multitude of reconstructive options available today.


Planning an operation involves not only the examination of the operative defect but also a discussion concerning the patient’s wishes for reconstruction. Several important aspects must be developed in the reconstructed nose. As described by Burget, contour, color, texture, and function are all important aspects in the reconstructed nose.[1, 2, 3, 4]

Before determining how to properly perform nasal reconstruction, the aesthetic and anatomical breakdown of the nose must be understood. Anatomically, the nose is made up of a vascular lining, alar tip cartilages (sculptured cartilage), bone braces that buttress the dorsum and sidewalls of the nose, and thin skin that matches the rest of the face. Thus, when a deformity is present, the actual tissue missing must be delineated, whether it be the cover (skin), lining (mucosal lining, septal mucosa), or framework (septal hard tissue, alar cartilages, upper lateral cartilages, nasal bones, alar fibrofatty tissue). Also, the anatomical location of the defect and the surface extent of the defect must be examined.

For further reading, please see the Medscape Reference article Nasal Anatomy.


Initially, attention to the wound or wounds created by trauma or neoplasm excision is necessary. Determining the location, breadth, and depth of the wound or wounds is critical. Some small wounds may not require surgical intervention (eg, small defects of the medial canthus that may heal successfully by secondary intention), while other larger wounds may require extensive planning with a multistaged approach. The quality of surrounding skin and any indication of compromised vascular supply, such as scarring due to prior surgery or radiation therapy, should be considered. Identification of adjacent tissue with similar texture, color, and sebaceous gland density improves the aesthetic outcome. These factors often dictate the type of flap or graft needed for reconstruction.

Functional deficiencies such as airway patency should be identified and addressed prior to graft or flap placement. Prior existing asymmetry, functional deficiencies, and the possibility of skin mismatch are a few of the issues that need to be discussed with the patient prior to surgery.


The general indication for nasal reconstruction is a defect or loss of function of the nose that results from trauma or surgical excision of neoplasm. The preferred method for tumor removal is Mohs micrographic surgery. This technique is best suited for the removal of malignancies such as basal cell carcinoma and squamous cell carcinoma that may have poorly defined margins or may be recurrent or aggressive in nature. Biopsy samples of all tumors should be collected beforehand for confirmation. Mohs micrographic surgery then allows for careful review of peripheral and deep margins using horizontal frozen sections of the specimen, allowing for accurate identification and excision of clinically inapparent tumor.

An initial operation may be necessary to release old scars, to re-establish patency or function, or to allow repositioning of normal tissues. However, the indications for each reconstructive procedure vary based on the site, size, and depth of the defect.

Aesthetic subunits of the nose (see the image below) should be considered for all procedures.[5] Violation of these borders may result in less-than-satisfactory aesthetic results. This is especially true of defects of the alar crease, where defects smaller than 1 cm may include the nasal ala, the alar crease, and the supraalar crease nasal dorsum. In fact, completing the resection of an aesthetic subunit and performing a total reconstruction to the border of adjacent subunits that allows for less noticeable scarring may be desirable.

Aesthetic subunits of the nose: Nasal dorsum (blue Aesthetic subunits of the nose: Nasal dorsum (blue), alar crease (green), nasal tip (red), soft triangle (yellow), columella (orange), and nasal ala (purple).

When secondary intention healing results in unacceptable wound contraction and poor aesthetic results, reconstruction must be considered. Generally, secondary healing produces acceptable results when the wound is smaller than 1 cm in diameter, less than 4-5 mm in depth, and farther than 5-6 mm from the mobile alar margin. Specifically, the medial canthal portion of the nasal root and the alar groove heal well by secondary intention.

Considering the thickness of the skin is important in planning skin grafting. The thickness of the nasal tip averages 2400 μm, compared with a thickness of 1300 μm in the nasal dorsum. Therefore, submental, nasolabial, or preauricular donor sites are usually better fits for nasal tip cutaneous defects. Thinner postauricular grafts are ideal for superior nasal dorsal defects, although they may be appropriate in the nasal tip of some thin-skinned patients.

Relevant Anatomy

The nose is composed of 3 layers: the skin, the bony and cartilaginous framework, and the mucosal lining. The shape of the upper two thirds of the nose is created by the nasal bones, dorsal septum, and upper lateral cartilages. The tip of the nose is defined primarily by the lower lateral cartilages. The nose is broken down into natural concave and convex surfaces that become apparent as lighted ridges and shadowed valleys, defining underlying areas of cartilage and bone. A thorough understanding of these subunits is fundamental for creating a proper reconstructive plan for a nasal deformity.

As described by Burget, 5 of these subunits are convex: the tip, dorsum, columella, and paired ala-nostril sills. The paired sidewalls and the soft triangles make up the 4 concave subunits. When more than half of a subunit is involved, replacing the entire subunit to yield a better aesthetic result may be more practical. Because a subunit flap takes on a concave (rather than a convex) form when it heals, subunits are also best used to repair the convex (but not the concave) unit areas. However, when flaps are not used, symmetry among all subunits should be considered because the natural shadows created by nasal contours determine the desired cosmetic result.

The nose is also broken down into the following skin-thickness zones:

  • Zone 1 covers the upper dorsum and sidewalls of the nose and is the most superior. Its skin is thin, smooth, and without sebaceous glands and rests easily over the underlying cartilage and bone.

  • Zone 2 begins approximately 1.5 cm above the supratip area of the skin and covers most of the nasal tip and alar lobules. It continues inferiorly halfway down the infratip lobule and to within 4 mm of the alar margin. The skin here is thick and has sebaceous glands. Underlying the skin is a layer of dense fat.

  • Zone 3 includes a small strip along the alar margin, the soft triangles, the lower half of the infratip lobule, and the columella. The skin is smooth, thin, and without sebaceous glands. In contrast to the skin of zone 1, the skin is relatively fixed to the deep cartilage and does not move easily.

The nasal anatomy clearly increases in complexity from the nasal root to the nasal tip. The superior nasal dorsum is composed of paired nasal bones with overlying skin that is thin, usually mobile, and readily reconstructed. Glabellar skin is a good source of extra skin when intrinsic nasal skin is inadequate for repair and skin grafting techniques are not desired. The middle nasal vault consists of skin whose thickness is similar to that of the upper nose that overlies the paired upper lateral cartilages.

Finally, the lower third of the nose consists of thick sebaceous skin relatively fixed to the underlying lower lateral cartilages. This makes reconstruction of lower third defects significantly more challenging than reconstruction of the remainder of the nasal framework. The 3-dimensional structure of the lower third of the nose also adds to the complexity of these reconstructions. Subunits of this area include the nasal tip, the paired nasal ala, the columella, and the paired soft tissue triangles. Precision in identification of and adherence to these separate units is critical in maintaining the natural shapes of the lower nose.

Vascular anatomy

The nose has a rich blood supply that allows for a multitude of local flap options. However, proper knowledge of the vascular anatomy is required not only for flap design (pedicled or random) but to prevent compromised blood supply, especially in the setting of trauma.

The arterial supply to the nose can be divided into those supplying external and internal structures or those based on the origin of the supplying branches (internal or external carotid arteries).

The nasal septum is vascularly supplied by the sphenopalatine artery from the maxillary artery, anterior ethmoid artery from the ophthalmic artery, ascending branch of the greater palatine artery from the maxillary artery, and septal branches of the superior labial artery from the facial artery. Little’s area is the convergence of all these arterial supplies at the anterior portion of the septum.

The lateral nasal wall is supplied by branches of the greater palatine artery, sphenopalatine artery, and the anterior and posterior ethmoid arteries.

The external nose is supplied by the branches of the facial artery (lateral, septal, and angular arteries), ethmoid artery (external nasal artery), and ophthalmic artery (dorsal artery).

Veins in the nose follow their arterial counterparts. Of note, the venous system lacks valves and directly communicates to the cavernous sinus. This creates a potential risk of intracranial infection through hematogenous spread.


Generally, if a patient can tolerate the initial tumor excision, the patient can also tolerate the reconstructive procedure.

Absolute contraindications include poor general health (a failure to obtain preoperative clearance) and residual disease or uncertain surgical margins.

Relative contraindications include the following:

  • Coagulopathy or blood-thinning medications

  • Active smoking or tobacco use

  • Compromised vascular supply of the flap

  • Chronic malnutrition

  • Systemic diseases that affects wound healing

  • Previous surgical procedure

  • Radiation therapy

If possible, relative contraindications should be addressed prior to surgery.



Laboratory Studies

See the list below:

  • If an extensive multistage repair is indicated, requiring general anesthesia, a typical preoperative workup of the patient may be necessary (if not already considered as part of another surgical procedure). This should include a CBC count, coagulation studies, electrocardiography (with appropriate clearance by internist or cardiologist).

  • Patients who undergo repair with only local anesthesia may not require such an extensive workup.



Surgical Therapy

Zone-Specific Defects

Zone 1, or upper nose defects

For superficial, smaller (< 1.5 cm) defects of this area, small local flaps, including the rhomboid flap, bilobed flap, glabellar flap, single transposition flap, or skin graft (eg, those harvested from the preauricular area) are good choices. For larger defects, a forehead flap can be used for both the dorsal and sidewall subunits. For the sidewall subunits, a superiorly based melolabial flap is also an option. A study by Kelly-Sell et al indicated that a superiorly based bilobed flap can be used to repair larger, more cephalic, or more lateral nasal defects while minimizing the risk for lower nasal distortion that would be encountered if a laterally based bilobed flap were used for such defects.[6]

Zone 2 defects, including defects of the nasal tip

These defects, even though they may involve small defects of the nasal tip, can be difficult to repair because of the prominence of the nasal tip. The skin of this area is difficult to match and skin grafts are likely only suitably obtained from the forehead and from the immediate adjacent area. The skin here is also nonpliable, so local flaps are not easily performed. Thus, suitable flaps include the bilobed flaps of Esser and Zitelli, which minimize the dog ears that appear with other types of local flaps and are good for defects up to 1.5 cm.[7]

Indeed, a retrospective, single-surgeon study by Okland et al indicated that a bilobed flap, adequately thinned of excess subcutaneous tissue, can effectively serve as a transposition flap for the reconstruction of small nasal tip defects. Of the study’s patients, 16% were reported to have experienced complications, including scars, pincushioning, and nasal obstruction. Revision surgery, including scar revision and Z-plasty, was performed in 4% of patients. The presence of complications was not found to significantly correspond to defect size.[8]

Full-thickness grafts from the forehead can also match the zone 2 area.

For defects larger than 1.5 cm, a local or regional flap is better suited to repair the defect. The best flaps for this zone include a paramedian forehead flap or a nasolabial flap for a defect in the alar lobule.

One innovation that has been tested in zone 2 defect reconstruction has been the use of engineered autologous cartilage to restore the alar lobules. The study, by Fulco et al, involved five patients who underwent such reconstruction after excision of a nonmelanoma skin cancer on the alar lobule left them with a two-layer defect at least half the size of the alar subunit. Cartilage grafts used in the procedure were cultured from chondrocytes removed via biopsy from the nasal septum. At follow-up, performed at least 1 year after surgery, patients in the study were satisfied with the functional and aesthetic aspects of the reconstruction, with no adverse events having been recorded.[9]

Zone 3 defects of the lower nose

For defects in the soft tissue triangles, simple granulation for wound healing may be the best option to avoid notching.

For superficial defects of the columella that may involve only skin, secondary intention or a full-thickness skin graft are options.

For defects that involve skin and some soft tissue or cartilage in the columella, the optimal replacement involves a composite graft. This can be harvested from the antihelix of the ear and trimmed to fit the defect.

For superficial defects of the ala smaller than 1 cm and centered on the alar groove, healing by secondary intention is the best option.

For defects that are mid alar, a full-thickness skin graft is the best option.

For defects greater than 1 cm, a bilobed flap, 2-stage melolabial flap, or nasofacial groove flap are good options.

For full-thickness alar margin or alar defects that are smaller than 1.5 cm, a composite graft can be harvested from the helix of the ear.

For larger defects in this area, reconstructive options include a nasolabial flap, a forehead flap, or a radial forearm free flap. The radial forearm flap is based off of the radial artery and vein and some soft tissue and can be used to reconstruct the nasal lining or perform a total reconstruction using multiple paddles.

Multiple-Zone Defects and Total Nasal Reconstruction

Aesthetic subunits of the nose: Nasal dorsum (blue Aesthetic subunits of the nose: Nasal dorsum (blue), alar crease (green), nasal tip (red), soft triangle (yellow), columella (orange), and nasal ala (purple).

In some cases, multiple zones are involved or a total nasal reconstruction must be performed. Here, the options include a microvascular free flap (such as a groin flap, a radial forearm free flap, or a free flap from facial tissue), a paramedian forehead flap, or a delayed scalp flap. When the alar cartilages are involved, as mentioned above, cartilage may need to be harvested. Cartilage can be harvested from a multitude of sources, including the ears, the nasal septum, or the fifth to ninth costal cartilages. The harvested cartilage strips used in reconstruction are generally 5 mm wide. Also, bone grafts may be harvested and used to support the reconstructed nose. The cartilage is often placed more inferiorly than the original cartilage because the entire nose must be supported.

The paramedian and midline forehead flaps are vertically oriented and have a rich vascular supply that can supply the cartilage and soft tissue associated with a nasal reconstruction. The paramedian forehead flap for nasal reconstruction is based on turning a paddle of forehead tissue down around a pedicle 1.1-1.5 cm wide, with the supratrochlear vessels serving as the vascular supply to the pedicle. The flap should be cut to size to repair the defect. The flap is then thinned 3 weeks after the original surgery. The pedicle is then divided after inadequate eyebrow separation is imminent (which can occur 2 wk after the intermediate surgery). Revision should be halted for at least 3-4 months for proper healing and wound contracture.[10]

In all cases of reconstruction, and especially with the cases of subtotal and total reconstruction, extensive and meticulous planning is necessary. The reconstruction can often span multiple surgeries. The tissue must be built up sequentially from deep to superficial to properly reconstruct the nose. The flap must be properly designed to reconstruct subunits. A model to plan from and work on is key in these settings. Also, the contours should be sculpted to appropriately mold the soft tissue to achieve the best aesthetic result.

Options for reconstruction across multiple subunits are as follows:

  • Groin flap

  • Radial forearm free flap

  • Paramedian forehead flap

  • Microvascular free flap

Options for total nasal reconstruction are as follows:

  • Bipedicled vestibular skin flap or a contralateral mucoperichondrial flap for nasal lining

  • Radial forearm flap

  • Paramedian flap

  • Microvascular free flaps

A study by Hsiao et al described the use of an ulnar forearm flap for composite nasal defect reconstruction, allowing better donor-site cosmetic results than the radial forearm flap. Nasal passages were formed by tubularizing the flap twice, with the flap then folded on itself, providing coverage. Alae and a columella were formed by sewing the caudal edges together.[11]

Although there is a relatively paucity of reports comparing the two approaches, studies have suggested that, with paramedian forehead flaps, three-stage nasal reconstruction may be more suitable than a two-stage operation in patients with large complex nasal defects and those with a greater likelihood of complications. One study, for example, found no statistical difference in the complication rates between two- and three-stage cohorts, even though the patients in the latter group had significantly greater overall defect complexity. Moreover, by maximizing distal perfusion, the elevation and inset of a full-thickness flap in the three-stage procedure may reduce the complication risk in patients with comorbidities, including those who smoke, are elderly, or have diabetes.[12]

Nasal lining reconstruction

When a total or subtotal reconstruction is needed, not only must the outside skin and soft tissue be replaced, but the nasal lining must also be reconstructed. The nasal lining can be reconstructed with multiple and complex options, and these depend largely on the location of the defect.

Intranasal flaps include the bipedicled vestibular skin flap, contralateral mucoperichondrial flap, or a contralateral septal flap. Often these flaps can be created to pass the septal mucoperichondrium to a defect on the opposite side. Intranasal lining flaps thin but are based upon pedicles and thus are well vascularized and allow for primary placement of cartilage grafts without delay.

As a nasal lining reconstructive option, a skin graft can also be braced with cartilage to prevent the graft’s contraction. Also, Menick has modified the forehead flap by folding it on itself and creating a 2-stage operation to create a nasal lining.[13] Another option is the prelaminated skin graft and cartilage or composite tissue placed under the distal end of forehead flap several weeks prior to reconstruction. If the nasal lining is not properly formed, contraction of the tissue can lead to an inadequate result. Disadvantages include possible need for delay; however, it allows for lining without significant intranasal manipulation. Microvascular free flaps from the radial forearm, groin, and thigh can be used not only to reconstruct the lining but also to reconstruct more nasal tissue.

The radial forearm flap can generally be used to reconstruct nasal lining, but by using a 3-paddle approach, it can also be used in a total reconstruction. In this case, one paddle acts as the nasal lining and the main nasal vault. A second paddle is used to repair the lip and the floor of the nose, and the third is the foundation of the columella. A full-thickness skin graft covers the anterior defect until the cartilage can be rebuilt over the lining.

Preoperative Details

Patients who seek nasal reconstruction are diverse and cross all age groups. However, in general, most patients who undergo extirpations of malignancies are elderly, while trauma cases can involve both young and old patients. Older patients may have previously undergone a Mohs-type excision of a cancerous lesion or a more radical excision, meaning they may have less amounts of skin and soft tissue for adequate resection of a lesion.

Trauma, of course, affects all age groups, and even very young patients may need to undergo nasal reconstruction, especially after serious trauma. Thus, preoperative evaluation follows the guidelines of other operative planning. Patients with significant comorbidities may require a more extensive workup such as anesthesia evaluation and cardiac risk assessment. Blood thinners should be stopped preoperatively to prevent bleeding risks. Also, the risks of each procedure, including the risk of infection, bleeding, flap necrosis, and other wound problems, must be discussed with every operative candidate.

Preoperatively, these patients must be counseled on realistic expectations of the surgery and potential complications, especially wound complications and flap necrosis. If a microvascular free flap is performed, the flap must be monitored for signs of arterial occlusion and venous congestion. If not recognized and corrected as soon as possible, both of these events could be devastating to flap reconstruction.

Nasal reconstruction procedures are performed under either local anesthesia or intravenous anesthesia. Factors that weigh in the decision include the size of the defect, the extent of required surgical reconstruction, the patient’s health, and the patient’s preference. The smallest defects of the nasal tip are often accompanied by the greatest levels of patient anxiety, and these procedures may be performed with intravenous sedation.

The most important aspect of preoperative preparation is counseling. A satisfied patient is one whose expectations are met or exceeded. If patients undergo reconstructive surgery with unrealistic expectations, satisfying them is almost impossible.

Preoperatively, patients are instructed to discontinue the use of blood thinners. Aspirin or aspirin-containing products should be discontinued for 2 weeks. For warfarin (Coumadin), 3 days is sufficient. Some of the newer antiplatelet agents are significantly stronger than aspirin and should be discontinued long enough before surgery to allow the patient's clotting abilities to normalize. Confirm any doubts as to patient compliance with appropriate coagulation studies.

Photodocumentation is critical in these patients. Postoperative visits should be accompanied by a review of the surgery and reconstruction. This serves to remind the patient of the extent of the problem. Standard nasal views, including frontal, lateral, and base views, are used.

Preoperative laboratory tests are age dependent. For local reconstructions, no preoperative laboratory workup is required. For sedation procedures, CBC count and urinalysis is obtained. In patients older than 40 years, ECG is obtained. In females of childbearing age, a pregnancy test is obtained.

For more extensive reconstructions, perioperative antibiotics are used. The authors prefer cephalexin in nonallergic patients. Doxycycline is used in patients who are allergic to penicillin. Antibiotics are continued for 3 days.

Postoperative Details

Postoperatively, monitor for infection; after more extensive operations, perioperative antibiotics may be administered. Aggressively monitor for signs of infection and flap necrosis that may indicate partial or complete loss of the flap. Careful tissue handling and proper operative technique and planning are the best ways of preventing postoperative complications.

Bleeding is always a risk, and the patient should be made aware of the possible need for blood transfusion and its associated risks. Hematomas can also lead to improper healing and, at times, may need to be drained and require an operation. Prevention of smoking, control of medical problems such as diabetes, and proper wound care (eg, gentle wound cleaning) are all factors that patients can control to obtain a better operation result. The original defect, as well as the progression in wound healing, should be accurately recorded at all points so that the patient and physician can observe and monitor the success of the operation.


Follow-up reconstruction of the nose is typically performed at 1 month, 3 months, 6 months, and 12 months. Scar irregularities are treated with dermabrasion after a minimum of 6 weeks postoperatively. Flaps are thinned a minimum of 8 weeks postoperatively; however, division of pedicled flaps may occur 2-4 weeks postoperatively.


Risks, as with any surgical procedure, include operative site bleeding, hematoma formation, wound infection, and tissue necrosis. However, complications associated with nasal reconstruction are uncommon when appropriate flap design and techniques are used. Functional compromise of the alae should be addressed prior to flap or graft placement.

The risk of hemorrhagic complications such as bleeding and hematoma can be reduced with appropriate surgical technique and meticulous hemostasis. Cellulitis secondary to bacterial infection often results in partial loss of a flap. Although infection is uncommon, the empiric use of antibiotics that cover staphylococcal organisms may be indicated.

The surgeon must be aware of the patient’s previous history of radiation, trauma, or other surgical treatments directed at the nose that may lead to scar formation and interfere with blood supply, impair healing, or preclude a specific flap option. Certain systemic diseases (eg, diabetes) and environmental exposures (eg, smoking) can also impair healing and blood supply. Consequently, flap loss or necrosis may occur; this risk can be reduced through wide undermining that minimizes tension, appropriate suturing, and meticulous handling. Note, however, that a flap that is excessively large for the defect size may lead to a trapdoor deformity.

Skin grafts are extremely reliable in the presence of an adequately vascularized bed. If the defect depth is to the level of the perichondrium or periosteum, great care must be taken to ensure that the tissue does not desiccate between excision and reconstruction. Partial or total loss of the skin flap may be allowed to heal by secondary intention. In defects of the tip in which secondary healing is allowed prior to skin graft placement, healthy granulation tissue must be present as support.

Outcome and Prognosis

Reconstruction of the nose can be complex because it requires restoration of function with often difficult aesthetic considerations. However, if the principles outlined above concerning cover, support, and lining are adhered to, excellent functional and aesthetics results can be achieved.

The patient should be informed that smaller procedures (dermabrasion, division and inset) may be necessary to correct the appearance of scars as part of the postoperative follow-up. During postoperative evaluations, alar integrity and airway patency should be assessed, and the patient should be reassured that final aesthetic results may take 12-24 months.

Note that a malignancy recurrence rate of 1.9% at an average of 39 months postextirpation has been reported.

Future and Controversies

This is an era of plastic surgery in which less is more. In virtually every arena of cosmetic and reconstructive surgery, the trend is toward more conservative and reliable procedures. In years past, respected authors were minimizing the use of skin grafting in the nose because of some more spectacular results that might be obtained with more aggressive procedures. Clearly, in most surgeons' hands, the procedure that can accomplish the task with the best chance of a good result while minimizing morbidity and potential complications is the one to choose.

Conversely, meticulous planning and execution of the forehead flap as popularized by Burget has expanded the realm of total nasal reconstructions. Although not a task to be undertaken by the casual reconstructive surgeon, the ability to reconstruct an entire nose as elegantly demonstrated by Burget has opened up this possibility to patients who used to be relegated to prosthetic placement. This reconstructive effort can be performed on a healthy stable patient who is willing to undergo the 12-18 months of reconstructive procedures often required to accomplish the desired result.