Myofascial Pain in Athletes Clinical Presentation

Updated: Sep 01, 2023
  • Author: Auri Bruno-Petrina, MD, PhD; Chief Editor: Sherwin SW Ho, MD  more...
  • Print
Presentation

History

Symptoms

Active TrPs produce a clinical complaint, usually pain, that the patient recognizes when the TrP is compressed digitally. The patient is aware of the pain caused by an active TrP, but he or she may or may not be aware of the dysfunction it causes.

Latent TrPs characteristically cause increased muscle tension and limit the stretch range of motion, which often escapes the patient's attention or is simply accepted. The patient becomes aware of pain originating from a latent TrP only when pressure is applied to it. Spontaneous referred pain appears with increased irritability of the TrP; then, the TrP is identified as active.

The patient usually presents with complaints due to the most recently activated TrP. When this TrP is successfully eliminated, the pain pattern may shift to that of an earlier key TrP that must also be inactivated. If the key TrP is inactivated first, the patient may recover without further treatment.

Patients with active MTrPs usually complain of poorly localized, regional, aching pain in subcutaneous tissues, including muscles and joints. They rarely complain of sharp, clearly localized cutaneous-type pain. The myofascial pain is often referred away from the TrP in a pattern that is characteristic for each muscle. Sometimes, the patient is aware of numbness or paresthesia rather than pain.

Dysfunction

In addition to the clinical symptoms produced by the sensory disturbances of referred pain, dysesthesias, and hypesthesias, patients can also have clinically important disturbances of autonomic and motor functions.

Disturbances of autonomic functions

Disturbances of autonomic functions caused by TrPs include abnormal sweating, persistent lacrimation, persistent coryza, excessive salivation, and pilomotor activities. Related proprioceptive disturbances caused by TrPs include imbalance, dizziness, tinnitus, and distorted perception of the weight of lifted objects.

Disturbances of motor functions

Disturbances of motor functions caused by TrPs include spasm of other muscles, weakness of the involved muscle function, loss of coordination by the involved muscle, and decreased work tolerance of the involved muscle.

The weakness and loss of work tolerance are often interpreted as an indication for increased exercise, but if this is attempted without inactivating the responsible TrPs, the exercise is likely to encourage and further ingrain substitution by other muscles, with further weakening and deconditioning of the involved muscle.

The combination of weakness in the hands and loss of forearm muscle coordination makes the grasp unreliable. Objects sometimes slip unexpectedly from the patient's grasp. The weakness results from reflex motor inhibition and characteristically occurs without atrophy of the affected muscle. Patients are prone to intuitively substitute muscles without realizing that, for instance, they are carrying the grocery bag in the nondominant but now stronger arm.

The motor effects of TrPs on the muscle in which they are located are considered in detail under Surface electromyography in Other Tests.

Sleep disturbances

Disturbance of sleep can be a problem for patients with a painful TrP syndrome. Authors of a series of studies have shown that many sensory disturbances, including pain, can seriously disturb the patient's sleep.

This sleep disturbance can, in turn, increase pain sensitivity the next day. Active MTrPs become more painful when the muscle is held in the shortened position for long periods and if body weight compresses the TrP. Thus, for patients with active TrPs, sleep positioning can be critical to prevent unnecessary disturbances of their sleep.

Next:

Physical Examination

Each muscle has a characteristic elicited referred pain pattern that, for active MTrPs, is familiar to the patient. Without a laboratory test or imaging method, diagnosis of MTrPs depends entirely on history and physical examination. [6, 5]  MTrP symptoms follow muscle overload, are activated acutely by sudden overload, or develop gradually with prolonged contractions or repetitive activity. The diagnostic skill required depends on considerable innate palpation ability, authoritative training, and extensive clinical experience.

Pain prevents a muscle with a MTrP from reaching its full stretch range of motion and also restricts its strength and/or endurance. Clinically, the lip is a localized spot of tenderness in a nodule within a palpable taut band of muscle fibers. Restricted stretch range of motion and a palpable increase in muscle tenseness (ie, decreased compliance) are more severe in more active MTrPs.

Active MTrPs are identified when patients recognize the pain induced by applying pressure to a MTrP. The taut band fibers usually respond with a MTrP when the taut band is accessible and when the TrP is stimulated by properly applied snapping palpation. The taut band fibers have a consistent twitch response when a needle penetrates the MTrP.

  • Taut band

    • By gently rubbing across the direction of the muscle fibers in a superficial muscle, the examiner can feel a nodule at the MTrP and a ropelike induration that extends from this nodule to the attachment of the taut muscle fibers at each end of the muscle.

    • The taut band can be snapped or rolled under the finger in accessible muscles. With effective inactivation of the TrP, this palpable sign becomes less tense and often (but not always) disappears, sometimes immediately. See the image below.

      Myofascial pain in athletes. Cross-sectional drawi Myofascial pain in athletes. Cross-sectional drawing shows flat palpation of a taut band and its trigger point.Left: Skin pushed to one side to begin palpation (A). The fingertip slides across muscle fibers to feel the cord-line texture of the taut band rolling beneath it (B). The skin is pushed to other side at completion of movement. This same movement performed vigorously is snapping palpation (C).Right: Muscle fibers surrounded by the thumb and fingers in a pincer grip (A). The hardness of the taut band is felt clearly as it is rolled between the digits (B). The palpable edge of the taut band is sharply defined as it escapes from between the fingertips, often with a local twitch response (C).
  • Tender nodule

    • Palpation along the taut band reveals a nodule exhibiting a highly localized and exquisitely tender spot that is characteristic of a MTrP. When the spot is tested for tenderness, displacement of the algometer by 2 cm produces a statistically significant decrement in pain threshold algometer readings. Clinically, displacement of the application of pressure by 1-2 mm at a MTrP can result in a markedly reduced pain response.

    • This strong localization of tenderness in the vicinity of a MTrP corresponds to the localized sensitivity of the experimental muscle for eliciting TrPs as demonstrated in rabbit experiments. A 5-mm displacement to either side of the trigger spot (at right angles to the taut band) results in almost total loss of response. However, the response fades out more slowly when stimulated over a range of several centimeters from the trigger spot along the taut band.

  • Recognition: Application of digital pressure on either an active or latent MTrP can elicit a referred pain pattern characteristic of that muscle. However, if the patient recognizes the elicited sensation as a familiar experience, this establishes the MTrP as being active and is one of the most important diagnostic criteria available when the palpable findings also are present. Similar recognition is observed frequently when a needle penetrates the MTrP and encounters an active locus.

  • Referred sensory signs: In addition to referring pain to the reference zone, MTrPs may refer other sensory changes such as tenderness and dysesthesias.

  • Local twitch response: Snapping palpation of the TrP frequently evokes a transient twitch response of the taut band fibers. Twitch responses can be elicited both from active and latent TrPs. Hubbard at al showed that no difference was noted in twitch responses whether elicited by snapping palpation or by needle penetration. See the image below.

    Myofascial pain in athletes. Longitudinal schemati Myofascial pain in athletes. Longitudinal schematic drawing of taut bands, myofascial trigger points, and a local twitch response. A: Palpation of a taut band (straight lines) among normally slack, relaxed muscle fibers (wavy lines). B: Rolling the band quickly under the fingertip (snapping palpation) at the trigger point often produces a local twitch response that usually is seen most clearly as skin movement between the trigger point and the attachment of the muscle fibers.
  • Limited range of motion

    • Muscles with active MTrPs have a restricted passive (stretch) range of motion because of pain. An attempt to passively stretch the muscle beyond this limit produces increasingly severe pain because the involved muscle fibers are already under substantially increased tension at rest length.

    • The limitation of stretch due to pain is not as great with active movement as with passive lengthening of the muscle; this finding at least partly due to reciprocal inhibition. When the TrP is inactivated and the taut band is released, range of motion returns to normal.

    • The degree of limitation produced by MTrPs is much more marked in some muscles (eg, subscapularis) than in other muscles (eg, latissimus dorsi).

  • Painful contraction: When a muscle with an active TrP is strongly contracted against fixed resistance, the patient feels pain. This effect is most marked when the patient attempts to contract the muscle when it is in a shortened position.

  • Weakness

    • Although weakness is generally characteristic of a muscle with active myofascial MTrPs, the magnitude is varied from muscle to muscle and from subject to subject.

    • EMG studies indicate that, in muscles with active MTrPs, the muscle starts out fatigued, it fatigues more rapidly, and it becomes exhausted sooner than normal muscles. The weakness may reflect reflex inhibition of the muscle by the MTrPs.

Previous